Selecting Scales by Multiple Kernel Learning for Shape Diffusion Analysis

نویسندگان

  • Umberto Castellani
  • Aydın Ulaş
  • Vittorio Murino
  • Marcella Bellani
  • Gianluca Rambaldelli
  • Michele Tansella
  • Paolo Brambilla
چکیده

Brain morphological abnormalities can typically be detected by advanced geometrical shape analysis techniques. Recently, shape diffusion methods have proved to be very effective in providing useful descriptions for brain classification purposes. In particular, they allow the analysis of such shapes at multiple scales, but the selection of the correct range of scales remains an open issue heavily affecting the performance of methods, and it needs to be estimated adaptively for different classes of shapes. In this paper, we focus on the diffusion scale selection in order to define a robust shape descriptor for brain classification. To this end, geometric features are extracted for each scale and the best feature combination is selected by employing multiple kernel learning (MKL). In the presented experiments, we compare the shape of Thalamic regions in order to discriminate between normal subjects and schizophrenic patients. We demonstrate that MKL allows to obtain classifiers which are more accurate with respect to other competing algorithms for schizophrenia detection. Moreover, using the weights computed by the MKL algorithm, we can select at which scale the features are more effective for schizophrenia classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet kernel learning

This paper addresses the problem of optimal feature extraction from a wavelet representation. Our work aims at building features by selecting wavelet coefficients resulting from signal or image decomposition on an adapted wavelet basis. For this purpose, we jointly learn in a kernelized large-margin context the wavelet shape as well as the appropriate scale and translation of the wavelets, henc...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Adaptive Distance Learning Scheme for Diffusion Tensor Imaging using Kernel Target Alignment

In segmentation techniques for Diffusion Tensor Imaging (DTI) data, the similarity of diffusion tensors must be assessed for partitioning data into regions which are homogeneous in terms of tensor characteristics. Various distance measures have been proposed in literature for analysing the similarity of diffusion tensors (DTs), but selecting a measure suitable for the task at hand is difficult ...

متن کامل

Matching of 3 D Visual Shapes using Graph Laplacian and Heat - Kernel

3D shape analysis is an extremely active research topic in both computer graphics and computer vision. In computer vision, 3D shape acquisition and modeling are generally the result of complex data processing and data analysis methods. There are many practical situations where a visual shape is modeled by a point cloud observed with a variety of 2D and 3D sensors. Unlike the graphical data, the...

متن کامل

Representation, Segmentation and Matching of 3D Visual Shapes using Graph Laplacian and Heat-Kernel

3D shape analysis is an extremely active research topic in both computer graphics and computer vision. In computer vision, 3D shape acquisition and modeling are generally the result of complex data processing and data analysis methods. There are many practical situations where a visual shape is modeled by a point cloud observed with a variety of 2D and 3D sensors. Unlike the graphical data, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011